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Abstract. Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon 

(ROC) emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural 

coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from 15 

VCPs throughout the United States, including spatial allocation to regional and local scales. Evaporation of species in the VCPy 

framework is a function of the compound specific physiochemical properties that govern volatilization and the timescale relevant 

for product evaporation. We introduce the terms evaporation timescale and use timescale, respectively, to describe these 

processes. Using this framework, predicted national, per-capita organic emissions from VCPs are 9.7 kg person-1 year-1 (6.5 kgC 

person-1 year-1) for 2016, which translates to 3.12 Tg (2.10 TgC), making VCPs a dominant source of anthropogenic organic 20 

emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were 

characterized through Monte Carlo analysis, resulting in a 95% confidence interval of national VCP emissions for 2016 of 2.68 – 

3.60 Tg (1.81 – 2.42 TgC). This nationwide total is broadly consistent with the US EPA’s 2017 National Emission Inventory 

(NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts larger VCP 

emissions than the NEI for approximately half of all counties, with 5% of all counties featuring increases > 60%. Categorically, 25 

personal care products (150%) and paints/coatings (34%) feature the largest increases, whereas pesticides (-54%) and printing 

inks (-13%) feature the largest decreases. An observational evaluation indicates emissions of key species from VCPs are 

reproduced with high fidelity in the methods employed here (normalized mean bias of -13% with r = 0.95). Sector-wide, the 

effective secondary organic aerosol yield and maximum incremental reactivity of VCPs are 5.3% by mass and 1.59 g O3 g-1, 

respectively, indicating VCPs are an important, and likely underrepresented to-date, source of secondary pollution in urban 30 

environments. 

 

1 Introduction 

 

Reactive organic carbon (ROC), which includes both non-methane organic gases and organic aerosol (OA), is central to 35 

atmospheric oxidant levels and modulates the concentration of all reactive species (Heald and Kroll, 2020; Safieddine et al., 

2017). Gas-phase ROC features both biogenic and anthropogenic sources and, following oxidation, can lead to the formation of 

tropospheric ozone and secondary organic aerosol (SOA). Organic aerosol is often the dominant component of total fine 

particulate matter (PM2.5) throughout the world (Jimenez et al., 2009; Zhang et al., 2007), and SOA is often the dominant 
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component of OA in both urban and rural settings (Jimenez et al., 2009; Volkamer et al., 2006; Williams et al., 2010; Xu et al., 40 

2015). Since ozone and PM2.5 are both associated with impacts on human health and welfare (U.S. Environmental Protection 

Agency, 2019a; U.S. Environmental Protection Agency, 2020) that are global in nature (Burnett et al., 2018; Mills et al., 2018) 

and persist at low concentrations (Di et al., 2017; Kazemiparkouhi et al., 2020), accurately understanding the sources, magnitude, 

and speciation of organic emissions is critical. 

 45 

Historically, the dominant source of anthropogenic organic emissions in the United States has been motor vehicles (Khare and 

Gentner, 2018; McDonald et al., 2013; Pollack et al., 2013). However, successful emission reduction strategies implemented 

over several decades have dramatically reduced mobile emissions (Bishop and Stedman, 2008; Khare and Gentner, 2018; 

McDonald et al., 2013), resulting in substantial declines in both ambient gas-phase non-methane volatile organic compounds 

(NMVOC) and OA concentrations (Gentner et al., 2017; McDonald et al., 2015; Pollack et al., 2013; Warneke et al., 2012). Due 50 

to these changes, volatile chemical products (VCPs) are now viewed as the foremost source of anthropogenic organic emissions 

(Khare and Gentner, 2018; McDonald et al., 2018). The U.S. EPA has long accounted for VCPs in the National Emissions 

Inventory (NEI) as the “solvent sector.” In 1990, the mobile and VCP sectors were the two highest emitters of volatile organic 

compounds (VOC; a regulatory defined collection of organic species that excludes certain compounds, such as acetone) at the 

national level. Mobile and VCP sources emitted 7.2 Tg and 5.0 Tg of VOCs, respectively (U.S. Environmental Protection 55 

Agency, 1995). By 2017, EPA estimates of VOC emissions from both the mobile and VCP sectors each dropped to 2.7 Tg (U.S. 

Environmental Protection Agency, 2020). For VCPs, factors driving the emissions decrease over this period include, but are not 

limited to, reformulation of consumer products (Ozone Transport Commission, 2016) and implementation of National Emissions 

Standards for Hazardous Air Pollutants regulations for industrial processes (Strum and Scheffe, 2016). Potentially complicating 

the trend and assessment of relative roles of different sectors, new inventory methods have suggested that VCP emissions in the 60 

NEI could be biased low by a factor of 2-3 (McDonald et al., 2018). 

 

The decades-long increasing relative contribution of VCPs to total anthropogenic organic emissions could have several important 

implications for modelling and improving air quality. First, modelling studies of SOA from anthropogenic VOCs have generally 

focused on combustion sources (Hodzic et al., 2010; Jathar et al., 2017; Murphy et al., 2017), which are typically rich in 65 

aromatics and alkanes (Gentner et al., 2012; Lu et al., 2018). In contrast, emissions from VCPs occur through evaporation and 

contain large fractions of oxygenated species (e.g. glycol ethers, siloxanes), many of which feature uncertain SOA yields 

(McDonald et al., 2018). Second, adequate chemical mechanism surrogates for species common in VCPs (e.g. siloxanes) are 

lacking (Qin et al., 2020). As VCPs and their components could have significant SOA potential (Li et al., 2018; Shah et al., 

2020), revisiting VCP emissions mapping to chemical mechanisms could help reduce modelled bias, which has historically been 70 

difficult to resolve (Baker et al., 2015; Ensberg et al., 2014; Lu et al., 2020; Woody et al., 2016). Third, VCPs feature substantial 

quantities of intermediate-volatility organic carbon (IVOC) compounds (CARB, 2019) and better representing their source 

strength could help resolve the high IVOC concentrations observed in urban atmospheres (Lu et al., 2020; Zhao et al., 2014). 

Fourth, if the VCP sector is systematically low biased in the NEI or select urban areas, there could be implications for ozone 

pollution (Zhu et al., 2019). Finally, reducing organic emissions from VCPs has traditionally been viewed through the lens of 75 

minimizing near-field chemical exposure (Isaacs et al., 2014) or mitigating ozone pollution (Ozone Transport Commission, 

2018), both of which can be accomplished through product reformulation. For example, reducing the magnitude of regulatory 

VOC emissions from VCPs can be accomplished by reformulating a product with lower-volatility ingredients that are less likely 

to evaporate (Ozone Transport Commission, 2016). However, if these lower-volatility replacement ingredients eventually 
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evaporate on atmospherically relevant timescales, they could be efficient SOA precursors (Li et al., 2018).  80 

 

Given these concerns, the need to understand and resolve differences among inventories becomes increasingly important. Here, 

we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial 

allocation to the county-level. In this framework, fate and transport assumptions regarding evaporation of a species in a product 

into ambient air are a function of the compound specific physiochemical properties that govern volatilization and the timescale 85 

available for a product to evaporate. We introduce the terms evaporation timescale and use timescale, respectively, to describe 

these processes. Since product ingredients are considered individually, determination of emission composition is explicit. This 

approach also enables quantification of emission volatility distributions and the abundance of different compound classes. In 

addition, we test the sensitivity of predicted emission factors to uncertain parameters, such as use and evaporation timescales, 

through Monte Carlo analysis, evaluate the VCPy inventory using published emission ratios, and estimate the effective SOA and 90 

ozone formation potential of both the complete sector and individual product use categories.  

2 Methods 

2.1 VCPy: A Framework for Estimating Reactive Organic Carbon Emissions from Volatile Chemical Products 

The VCPy framework is based on the principle that the magnitude and speciation of organic emissions from VCPs are directly 

related to (1) the mass of chemical products used, (2) the composition of these products, (3) the physiochemical properties of 95 

their constituents that govern volatilization, and (4) the timescale available for these constituents to evaporate (Fig. 1). VCPy 

attempts to address each of these points by utilizing the most relevant datasets available. Since the VCP sector includes 

residential, commercial, institutional, and industrial sources, a consistent stream of data sources for all product categories is 

difficult. As such, this work implements a hybridized methodology that utilizes the best features of prior emission inventory 

methods, while introducing new methods to make improvements where necessary. The result produces national-level, per capita 100 

emission factors for all product categories in the VCP sector that can be further tailored for regional or localized analysis. The 

per capita basis is useful for comparison across frameworks and over time, but emissions can be recast in other units as needed. 

Briefly, survey data are used to generate a 1st-order product composition profile for a composite of product types, which 

quantifies the fraction of organic, inorganic, and water components. The organics component is further divided into individual 

species (e.g. ethanol, isobutane, isopropyl alcohol). A variety of data sources are used to estimate the national-level product 105 

usage and each composite is assigned a use timescale, reflecting the elapsed time between use and any explicit removal process. 

Finally, the characteristic evaporation timescale of each organic component is calculated using quantitative structure-activity 

relationship (QSAR) modelled physiochemical properties and compared to the assigned use timescale. If the characteristic 

evaporation timescale of the organic component is less than the assigned use timescale of the composite, it is assumed that the 

compound is emitted. Else, the compound is retained in the product or other condensed phase (e.g. water) and permanently 110 

sequestered.  

2.1.1 Product Use Categories (PUCs) and sub-Product Use Categories (sub-PUCs) 

VCPy disaggregates the VCP sector into several components called Product Use Categories (PUCs). An individual PUC is not 

exclusively used in a singular setting (e.g. residential vs. commercial) and examples include Personal Care Products, Cleaning 

Products, and Paints & Coatings. PUCs are further divided into sub-PUCs, which are composites of individual product types 115 

featuring similar use patterns. In addition to permitting tailored fate-and-transport assumptions, similar hierarchical product 
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schema are also useful for models estimating near-field exposure to chemicals, through routes such as dermal contact and indoor 

inhalation (Isaacs et al., 2020). As an example, there are two sub-PUCs allocated to the Personal Care Product PUC: Short Use 

Products and Daily Use Products. These two sub-PUCs are differentiated by the length of use prior to removal (i.e. the use 

timescale). The mass of chemical products used and subsequent organic emission factors, which are the main output from VCPy, 120 

are calculated at the sub-PUC level (Fig. 1). Currently, there are nine PUCs and sixteen sub-PUCs implemented in VCPy (Table 

1). 

2.1.2 National-Level Product Usage 

To estimate VCP product use, some prior work has used national economic statistics, such as market sales or shipment values 

(e.g. U.S. Environmental Protection Agency, 2020; McDonald et al., 2018). Others have incorporated product usage statistics 125 

based on consumer habits and practices (e.g. Isaacs et al., 2014; Qin et al., 2020), but these statistics are generally unavailable for 

commercial and industrial chemical usage, which limits their application. To better ensure the capture of all chemical product 

usage, including usage in residential, commercial, institutional, and industrial settings, national economic statistics are utilized, 

where possible (Table S1). 

 130 

Product usage from twelve sub-PUCs is estimated using national-level shipment statistics, commodity prices, and producer price 

indices. National-level economic statistics are retrieved from the U.S. Census Bureau’s Annual Survey of Manufactures (ASM; 

U.S. Census Bureau, 2016a), which provides annual statistical estimates for all manufacturing establishments nationally. Values 

are available for all 6-digit North American Industry Classification System (NAICS) codes, provided as product shipment values 

($ year-1), and are reported with associated relative standard errors (generally < 5%). To translate shipment values ($ year-1) to 135 

usage (kg year-1), we use commodity prices ($ kg-1) from the U.S. Department of Transportation’s 2012 Commodity Flow 

Survey (U.S. Department of Transportation, 2015). An exception is for all Paint & Coating sub-PUCs. Commodity prices for 

these sub-PUCs are taken from the U.S. Census Bureau’s Paint and Allied Products Survey (U.S. Census Bureau, 2011a) and 

representative of 2010. To translate these commodity prices, which are from 2010 and 2012, to values reflective of 2016, we use 

producer price indices reported by the Federal Reserve Bank of St. Louis (U.S. Bureau of Labor Statistics, 2020). Commodity 140 

price indices from the Federal Reserve Bank are updated for all NAICS manufacturing codes monthly, which we average to 

create annual price indices (Table S2). An implicit assumption in this methodology is that manufacturing and product usage are, 

on average, annually balanced. 

 

We preferentially utilize product usage numbers derived from the above methodology, when possible, as all data sources have 145 

the following characteristics: (1) they are nationally derived and therefore less influenced by regional differences in 

manufacturing and formulation, and (2) all datasets are freely available to the public. However, due to data limitations, product 

usage for four sub-PUCs are estimated using other sources. The Dry Cleaning and Oil & Gas product usage estimates are derived 

from the national-level solvent mass usage reported by an industry study (The Freedonia Group, 2016). The Miscellaneous 

Products and Fuels & Lighter product usage estimates are derived from reported sales data, specific to California, from the 150 

California Air Resources Board’s 2015 Consumer and Commercial Products Survey Data (CARB, 2019). These sales numbers 

are scaled upwards to a national-level by assuming equivalent per-capita product usage.  
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2.1.3 1st-Order and Organic Product Composition 

Each sub-PUC features two composite profiles. The initial composite is the 1st-order product composition profile, which 

disaggregates the total mass of each sub-PUC into its water, inorganic, and organic fractions (Table 2). Total organics are further 155 

decomposed into non-evaporative and evaporative organics. The quantification and accounting of evaporative organics in this 

framework are necessary as CARB’s organic profiles are processed to exclude organics that are not anticipated to evaporate on 

atmospherically relevant timescales. For ten sub-PUCS, the 1st-order product composition profile uses data from the California 

Air Resources Board’s 2015 Consumer and Commercial Products Survey (CARB, 2019). Various product types are sorted into 

each sub-PUC and the 1st-order product composition profiles are calculated on a weighted basis using the reported sales from 160 

manufacturers and formulators in California. Due to omissions stemming from confidentiality concerns, not all sales and 

composition data from the survey are available. We utilize the publicly available portions of the data, which constitutes most of 

the survey and includes over 330 product types. For example, 126 product types and 20 product types were sorted into the 

General Cleaners and Adhesives & Sealants (Table S3) sub-PUCs, respectively.  

 165 

For Architectural Coatings, Industrial Coatings, and Printing Inks, the 1st-order product composition profile is derived from data 

in the California Air Resources Board’s 2005 Architectural Coatings Survey (CARB, 2007). The Architectural Coatings sub-

PUC uses data from all profiles in the survey, which is dominated by flat paint, non-flat paints, and primers. Industrial Coatings 

and Printing Inks use the 1st-order product composition profiles of Industrial Maintenance coatings and Graphic Arts coatings, 

respectively. The 1st-order product composition profile for aerosol coatings uses data from the California Air Resources Board’s 170 

2010 Aerosol Coatings Survey (CARB, 2012), which includes more than 20 aerosolized product types. Only the evaporative 

organic composition of these products was provided, so the remaining mass was evenly split between water and inorganics. For 

Dry Cleaning and Oil & Gas, as the product usage for these sub-PUCs were derived from the organic functional solvent mass 

usage, it is assumed that this mass is entirely evaporative organics. 

 175 

The second composite is the organic composition profile. Again, the California Air Resources Board’s 2015 Consumer and 

Commercial Products Survey (CARB, 2019) was used to derive the composition of organics for ten sub-PUCs (Table S4). 

Within each sub-PUC, all product types are mapped to an associated organic profile (CARB, 2018; see Table S3) and weighted 

based on their evaporative organic contributions to the total sub-PUC. For Architectural Coatings, an 88% water-based and 12% 

solvent-based paint (CARB, 2007) composite is generated. Aerosol Coatings are calculated on a weighted basis using the 180 

potentially evaporative organic contributions reported by CARB’s 2010 Aerosol Coatings Survey (CARB, 2012). The organic 

composition profiles for Industrial Coatings, Printing Inks, and Dry Cleaning all utilize profiles (3149, 2570, 2422, respectively) 

from EPA’s SPECIATEv5.0 database (EPA, 2019b). Approximately 65% of the solvents used in the Oil & Gas sector are 

alcohols and the remainder are a broad range of hydrocarbons (The Freedonia Group, 2016). Since detailed composition data for 

Oil & Gas solvents are sparse, all Oil & Gas alcohols are assumed to be methanol, as it is widely used in and emitted from Oil & 185 

Gas operations (Lyman et al., 2018; Stringfellow et al., 2017; Mansfield et al., 2018). The remaining 35% is allocated to naphtha, 

a blend of hydrocarbon solvents. 

 

Several components within CARB profiles are lumped categories or complex mixtures. This includes naphtha, mineral spirits, 

distillates, Stoddard Solvent, fragrances, volatile methyl siloxanes, and a series of architectural coating and consumer product 190 

“bins.” All naphtha, mineral spirits, distillates, and Stoddard Solvent occurrences in individual profiles are treated as a single 

mineral spirits profile (Carter, 2015). Volatile methyl siloxanes include several compounds (e.g. D4, D5, D6), all of which are 
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emitted in varying proportions (Janechek et al., 2017). Here, the lumped volatile methyl siloxane identity is preserved but the 

physiochemical properties of decamethylcyclopentasiloxane is applied to the surrogate. Fragrances are a diverse mixture of 

organic compounds that include many terpenes and alkenes (Nazaroff and Weschler, 2004; Sarwar et al., 2004; Singer et al., 195 

2006b). However, since the proportion of these constituents are unknown, all fragrances are physically treated as d-limonene 

since it is the most prevalent terpene emitted from fragranced products (Sarwar et al., 2004; Singer et al., 2006b). Finally, for the 

architectural coating and consumer product “bins,” we use the representative chemical compositions derived by Carter, 2015. 

2.1.4 Controls 

There are two methods for controlling organic emissions from VCPs. The first method is through product reformulation, which 200 

would occur prior to product usage. Strategies that fit this definition include switching from a hydrocarbon solvent-based 

ingredient to one that is water-based, increasing the proportion of non-organics in a product, and reformulating a product with 

lower-volatility ingredients that are less likely to evaporate (Ozone Transport Commission, 2016). VCP emissions that stem from 

residential, commercial, and institutional settings rely on these pre-use controls to reduce emissions. Regulations often set VOC 

content limits for chemical products (e.g. national standards: Section 183(e) of the Clean Air Act; 40 CFR 59), with California 205 

(e.g. CARB – Title 17 CCR) typically setting some of the most stringent limits in the country (Ozone Transport Commission, 

2016). As the 1st-order and organic composition profiles utilized here are almost exclusively derived from product composition 

data, pre-use controls are implicitly represented. In fact, since the product composition data is from manufacturers and 

formulators in California, where product VOC content limits are typically more stringent than national regulations, applying 

these profiles nationally likely results in conservative assumptions. 210 

 

The second pathway of controlling organic emissions from VCPs is through post-use controls. Strategies that fit this definition 

include add-on controls, manufacturing process modifications, and disposal techniques. Add-on control strategies and 

manufacturing process modifications are limited to industrial and commercial emission sources, such as Industrial Coating (U.S. 

EPA, 2007; U.S. EPA, 2008) and Printing Ink (U.S. EPA, 2006a; U.S. EPA, 2006b) facilities. Since adoption of these 215 

technologies vary widely in space and time, assigning a single post-use control efficiency is not considered. As several of these 

industrial sources (e.g. coatings, printing inks, dry cleaning) feature controls, as required by Section 112 of the Clean Air Act (40 

CFR 63), this assumption could lead to localized high bias and will be refined in future work. Here, we only consider post-use 

controls through disposal techniques for the Oil & Gas and Fuels & Lighter sub-PUCs. For Oil & Gas, we assume that the 

solvents used in these processes become entrained in the produced water at these sites. Since produced water is largely (~89-220 

98%) reinjected for enhanced oil and gas recovery or disposal (Lyman et al., 2018; Liden et al., 2018), we apply a post-use 

control efficiency of 94% (i.e. average of reported reinjection rates) to this sub-PUC. However, it should be noted that reinjection 

frequency and solvent usage can vary regionally. For Fuels & Lighters, we assume 90% of the organics are destroyed through 

combustion upon use (CARB, 2019). 

2.1.5 Evaporation and Use-Timescales 225 

Fate-and-transport in the VCPy framework is a function of the compound specific evaporation timescale and the use timescale of 

each sub-PUC. It should be noted that this methodology explicitly results in the organic speciation of emissions differing from 

the organic composition of products from which they volatilize. For example, the composition of organics within a product may 

differ from the speciation of emitted organics if the product contains low-volatility compounds that do not evaporate on relevant 

timescales. 230 
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The evaporation timescale is the compound specific (i.e. independent of the sub-PUC of interest), characteristic timescale of 

emission from a surface layer and is calculated using previously published methods (Khare and Gentner, 2018; Weschler and 

Nazaroff, 2008). This timescale is defined as a relationship between the mass of a compound applied and the rate of its emission, 

which can be expressed by: 235 

 

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒 [ℎ𝑟] =  
𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑅𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
⁄ =

𝐾𝑂𝐴 × 𝑑
𝑣𝑒

⁄    (1) 

 

where KOA is the octanol-air partitioning coefficient of the compound, d [m] is the assumed depth of the applied product layer, 

and ve [m/hr] is the mass transfer coefficient of the compound from the surface layer into the bulk air, which is a function of 240 

aerodynamic and boundary layer resistances. Median values for d [0.1 mm] and ve [30 m/hr] from Khare and Gentner (2018) are 

selected here. It should be noted that ve can vary substantially based on outdoor vs. indoor atmospheric conditions and future 

work will incorporate a two-box model to better account for such differences. A compound’s KOA it is the ratio of an organic 

chemical’s concentration in octanol to the organic chemical’s concentration in air at equilibrium. It is often used to quantify the 

partitioning behaviour of an organic compound between air and a matrix. As experimental values of KOA are sparse, modelled 245 

estimates from the quantitative structure-activity relationship (QSAR) model OPERA (Mansouri et al., 2018) are used here. All 

physiochemical properties, including OPERA results, are retrieved from the U.S. EPA’s CompTox Chemistry Dashboard 

(https://comptox.epa.gov/dashboard; last access: August 31, 2020). While simple in setup, the assumptions adopted here broadly 

capture the relevant characteristic evaporation timescale for each compound. 

 250 

Use timescale is the timescale available for a sub-PUC to evaporate and is based on the length of its direct use phase (i.e. the 

elapsed time between application and any explicit removal process). As this value is subjective, broad values are applied to each 

sub-PUC (Table S5). For example, it is assumed that all products used in the bath and shower are quickly sequestered and 

washed down the drain, thus largely unavailable for emission (Shin et al., 2015). As such, Short Use Products are assigned a 

“Minutes” use timescale. In contrast, it is assumed that each person bathes once a day. Therefore, all Daily Use Products are 255 

assigned a “Days” use timescale.  

 

Emissions are determined by comparing the calculated evaporation timescale for each component with the assigned use 

timescale for the sub-PUC. If the use timescale for the sub-PUC is greater than the evaporation timescale for a compound, the 

compound is emitted. Else, the compound is retained in the product or other condensed phase and permanently sequestered. 260 

Overall, organic emissions (E) for the complete sector are calculated as a summation over all organic compounds, i, and sub-

PUCs, j, as follows: 

 

𝐸 = ∑ {
0                                                        𝑖𝑓 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑗 < 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑖

𝑈𝑗 × 𝑓𝐸𝑗
 × 𝑓𝑆𝑖,𝑗

× (1 − 𝑓𝐶𝑗
)       𝑖𝑓 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑗 ≥ 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑖

𝑖,𝑗                                          (2) 

 265 

where U is the product usage (Table 1), ƒE is the evaporative organic fraction (Table 2), ƒS is the fraction of an organic 

compound in the evaporative organics (Table S4), and ƒC is the fraction of emissions that feature post-use controls on a mass 

basis. Application of Eqn. 2 determines the difference between organic product composition and organic emissions speciation. 
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2.2 Uncertainty Analysis 

The sensitivity of emission estimates to a variety of input variables are tested through a systematic Monte Carlo analysis. We 270 

perform 10,000 simulations where product usage, evaporative organic proportions, variables associated with the characteristic 

evaporation timescale, the assigned use timescale, and post-use control assumptions are tested, both individually and as a group. 

For product usage, the primary sources of uncertainty are shipment values provided by the ASM, commodity prices, the balance 

of imports (including tourism) and exports, and unused product disposal. The ASM provides standard error estimates for most 

shipment values and are typically less than 5%. Uncertainty estimates are not provided for commodity prices and national-level 275 

exports generally outweigh traditional imports for most sub-PUCs (~2-15%; U.S. Census Bureau, 2016), but there are also 

imports of personal care products through tourism. Therefore, we conservatively assume there is a ±25% uncertainty (95% CI) to 

all product usage estimates. CARB does not provide uncertainty estimates associated with the composition of product types or 

sales proportions. To account for these uncertainties, as well as the uncertainties associated with generating composites, we 

assume there is a ±25% uncertainty (95% CI) for all “Evaporative Organic” (Table 2) proportions. For the characteristic 280 

evaporation timescale, there are several layers of uncertainty. Application patterns vary by product type, which impacts 

assumptions regarding the depth of the chemical layer. In addition, indoor vs. outdoor product use and application of products to 

variable surface types (e.g. absorbing vs. non-absorbing) can impact mass transfer rates. As such, we apply broad uncertainties 

for variables associated with the characteristic evaporation timescale. We assume d (i.e. the depth of the applied chemical layer) 

is lognormally distributed with a median value of 0.1 mm (95% CI ~ [0.01 mm – 1 mm]) and ve (i.e. the mass transfer 285 

coefficient) is normally distributed with a mean value of 30 m/hr (95% CI = [10 m/hr – 50 m/hr]). Since use timescales are 

categorical (e.g. minutes, days, years), we apply uncertainty by assuming the 95% CI of the assigned use timescale features a ±1 

categorical uncertainty (e.g. mean: minutes; 95% CI = [seconds – hours]). Finally, for non-zero, post-use controls, we assume a 

±25% uncertainty (95% CI). Additional avenues of uncertainty may persist but are difficult to quantify and therefore not 

included here. For example, due to the scarcity of large-scale product surveys, many of the 1st-order product composition profiles 290 

(e.g. Architectural Coatings) and organic profiles (e.g. Printing Inks) used in this analysis are more than a decade old. As a result, 

the proportion of organics in these product types and their organic components may have changed in the interim period. 

2.3 Spatial Allocation of National-Level Emissions 

Emissions are calculated at the national-level and spatially allocated to the county-level using several proxies. Ten sub-PUCs, 

including all Cleaning Products and Personal Care Products, are allocated using population (Table S6; U.S. Census Bureau, 295 

2020). Four sub-PUCs (Industrial Coatings, Allied Paint Products, Printing Inks, Dry Cleaning), all typically industrial in nature, 

are allocated using county-level employment statistics from the U.S. Census Bureau’s County Business Patterns (U.S. Census 

Bureau, 2018). The employment mapping scheme for these four sub-PUCs utilize the methods from the 2017 NEI (U.S. EPA, 

2020). On occasion, data in the County Business Patterns (CBP) is withheld due to confidentiality concerns. In those instances, 

we take the mid-point of the range associated with each data suppression flag. For Agricultural Pesticides, emissions are 300 

allocated based on county-level agricultural pesticide use and again taken from the 2017 NEI (U.S. EPA, 2020). Oil & Gas 

emissions are allocated using oil and gas well counts (U.S. EIA, 2019). 

2.4 Inventory Evaluation 

Previously published emission ratios from the Los Angeles basin during the summer of 2010 (de Gouw et al., 2018; de Gouw et 

al., 2017) are used to evaluate the VCPy emissions inventory (Table S7). Emissions ratios are generated by post-processing 305 

observed concentrations of organic gases, typically normalized to carbon monoxide (CO) or acetylene, to a period of “no 

https://doi.org/10.5194/acp-2020-1111
Preprint. Discussion started: 9 November 2020
c© Author(s) 2020. CC BY 4.0 License.



9 

 

chemistry” (Borbon et al., 2013; de Gouw et al., 2005; Warneke et al., 2007). As the air parcel is not photochemically aged (i.e. 

“no chemistry”), it is an ideal tool for evaluating an emissions inventory. An important caveat is that this method assumes the 

species being used for normalization (e.g. CO) is accurately inventoried and measured.  

 310 

Since the emission ratios are not specific to a sector and represent total emissions, all other sectors must be quantified and 

speciated. For this purpose, all non-VCP anthropogenic emissions from the 2017 NEI (U.S. EPA, 2020) are collected and 

speciated using EPA’s SPECIATEv5.0 database (EPA, 2019b; Table S8). This includes all on road, nonroad, nonpoint, and point 

sources. All VCP emission from the 2017 NEI are also collected and speciated for supplementary evaluation. In addition, 

biogenic emissions of ethanol, methanol, and acetone for May and June of 2016, as simulated by the Biogenic Emission 315 

Inventory System (Bash et al., 2016), were included to capture non-anthropogenic sources of these compounds. May and June 

were selected to coincide with the observational sampling months (de Gouw et al., 2018; de Gouw et al., 2017). As the observed 

emission ratios are specific to the Los Angeles basin, we derive all VCPy inventory emission ratios using data for Los Angeles 

County. Total CO emissions, including all on-road, non-road, non-point, and point sources, for Los Angeles County in 2017 are 

~320 Gg. While the observed and VCPy inventory emission ratios are separated by 6-7 years, the ambient non-methane 320 

hydrocarbon to CO concentration ratio in Los Angeles has been consistent for several decades, indicating changes in emission 

controls feature similar improvements for both pollutants over time (McDonald et al., 2013). In addition, the magnitude of 

observed emission ratios for a given region do not appreciably change over marginal time horizons (Warneke et al., 2007).  

2.5 Air Quality Impact Potential 

Each organic compound is assigned a SOA yield and Maximum Incremental Reactivity (MIR) to facilitate an approximation of 325 

the potential air quality impacts of VCPs. For SOA, a wide collection of published yields, including both chamber results and 

prediction tools, were utilized (Fig. S1). These include: (1) all linear alkanes use a quadratic polynomial fit to the volatility basis 

set (VBS) data from Presto et al., 2010 at 10 µg/m3; (2) all cyclic alkanes use linear alkane yields that are three carbons larger in 

size (Tkacik et al., 2012); (3) all branched alkanes use yields obtained from the Statistical Oxidation Model (SOM; Cappa and 

Wilson, 2012), as reported in McDonald et al. (2018); (4) benzene and xylenes use the average yields from Ng et al., 2007 under 330 

high-NOx conditions; (5) toluene uses the average from Ng et al., 2007 under high-NOx conditions and the VBS data from 

Hildebrant et al., 2009 at 10 µg/m3; (6) all alkenes use yields obtained from SOM, as reported in McDonald et al. (2018); (7) 

volatile methyl siloxanes use the two-product model parameters from Janecheck et al., 2019, which includes additional SOA 

yields from Wu and Johnson 2017, at 10 µg/m3; (8) all glycol ethers use chamber results and molecular structure relationships 

from Li and Cocker 2018 for reported and unreported glycol ethers, respectively; (9) benzyl alcohol uses the average of the 335 

lower bound yields reported by Charan et al., 2020; (10) all remaining non-cyclic oxygenates, where available, use the arithmetic 

average of SOM results and a 1-D VBS approach, as reported by McDonald et al., 2018; (11) all remaining cyclic oxygenates, 

where available, use yields obtained from SOM, as reported by McDonald et al., 2018; (12) all halocarbons and compounds with 

less than five carbons are assigned a yield of zero; and (13) all remaining species are conservatively assigned a yield of zero if 

the effective saturation concentration (i.e. 𝐶∗ =  (𝑃𝑣𝑎𝑝 × 𝑀𝑊) (𝑅 × 𝑇)⁄ ) is ≥ 3 × 106 µ𝑔 𝑚3⁄  and assigned the same yield as 340 

n-dodecane if the effective saturation concentration is < 3 × 106 µ𝑔 𝑚3⁄ . The MIR of each compound, which measures the 

formation potential of ozone under various atmospheric conditions where ozone is sensitive to changes in organic compounds 

(Carter, 2010b), is calculated using the SAPRC-07 chemical mechanism (Carter, 2010a) and expressed as a mass of additional 

ozone formed per mass of organic emitted (Carter, 2010b).  
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3 Results and Discussion 345 

3.1 National-Level PUC and sub-PUC Emissions 

National-level, per-capita organic emissions from VCPs are 9.7 kg person-1 year-1 (6.5 kgC person-1 year-1) for 2016 (Table 3), 

which translates to 3.12 Tg (2.10 TgC). When filtered to remove regulatory exempt organics, total emissions from VCPs are 2.6 

Tg of VOC. In comparison, the 2017 NEI reports a combined total of 2.6 Tg of VOC emissions for on-road mobile, non-road 

mobile, and other mobile (i.e. aircraft, commercial marine vessels, and locomotives) sources, respectively. Therefore, when 350 

measured as VOC, the VCP sector is equal in magnitude to the sum of all mobile sources nationally, which is broadly consistent 

with the national-level emissions estimate from the 2017 NEI. Categorically, emission factors are largest for Paints & Coatings, 

which total 3.4 kg person-1 year-1 (2.3 kgC person-1 year-1) and are approximately 35% of the total sector (Table 3). The next 

largest PUCs are Personal Care Products and Cleaning Products, which contribute 2.1 kg person-1 year-1 (21%) and 2.0 kg 

person-1 year-1 (20%), respectively. Printing Inks, Adhesives & Sealants, and Pesticides each account for 6-8% each, and the 355 

remaining PUCs contribute less than 2% in total.  

 

For the complete sector (Fig. 2), the most abundantly emitted compound class are oxygenated species (53%), followed by 

alkanes (31%; including straight-chained, branched, and cyclic), aromatics (8%), alkenes (5%), and halocarbons (3%). 

Individually, organic emissions are dominated by ethanol (Daily Use Products, General Cleaners), acetone (Paints & Coatings, 360 

General Cleaners), isopropyl alcohol (Daily Use Products, General Cleaners), toluene (Paints & Coatings, Adhesives & 

Sealants), n-tetradecane (Printing Inks), fragrances (Daily Use Products, General Cleaners), propane (Aerosol Coatings, 

Industrial Coatings), and volatile methyl siloxanes (Daily Use Products, Adhesives & Sealants). Each of these species comprise 

> 3% of total VCP organic emissions.  

 365 

In terms of volatility classification (Donahue et al., 2012), as determined by the effective saturation concentration (i.e. C*), total 

emissions are predominately VOCs (𝐶∗ >  3 × 106 µ𝑔 𝑚−3), but there are also considerable contributions from IVOCs (3 ×

102 µ𝑔 𝑚−3 < 𝐶∗ <  3 × 106 µ𝑔 𝑚−3 ; Fig. 2-3). IVOC emissions, which are efficient SOA precursors (Chan et al., 2009; 

Presto et al., 2010), are approximately 20% of total emissions. Of this 20% that are IVOCs, 55% are oxygenated compounds 

(mainly Texanol™, propylene glycol, and ethylene glycol), 27% are n-alkanes, and the rest are largely branched and cyclic 370 

alkanes. The prominence of oxygenated IVOC emissions (e.g. siloxanes, benzyl alcohol, glycol ethers) from VCPs is 

noteworthy, as SOA yields from these compounds have not historically been evaluated nor included as SOA precursors in model 

chemical mechanisms (Qin et al., 2020). However, work has been undertaken in recent years to better understand these 

compounds (e.g. Wu and Johnson 2017; Li and Cocker 2018; Janechek et al., 2019; Charan et al., 2020). Overall, Paints & 

Coatings is the largest source of IVOC emissions (~920 g person-1 year-1; Fig. 3), followed by Printing Inks (~350 g person-1 375 

year-1), Cleaning Products (~180 g person-1 year-1), and Pesticides (~170 g person-1 year-1). While Paints & Coatings emit more 

IVOCs by mass than all other PUCs, Printing Ink and Pesticide emissions both feature greater proportions of IVOCs to their total 

emissions (~44% and ~29%, respectively).  

 

These results also highlight how emissions from each PUC and sub-PUC are uniquely driven by mass of products used, organic 380 

composition, and use timescale. For example, the two largest sub-PUC sources are Daily Use Products and General Cleaners. 

Both are assigned a use timescale of 24-hr, but 40.6% of Daily Use Products are organic while General Cleaners are 

overwhelming composed of water (Table 2) and the annual mass usage of General Cleaners is ~3x higher than Daily Use 
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Products (Table 1). As a result, net emissions of General Cleaners are within 10% of those from Daily Use Products (1.85 kg 

person-1 year-1 and 2.03 kg person-1 year-1, respectively). The emissions of Short Use Products, which is assigned a “Minutes” 385 

use timescale, can further illustrate the importance of considering fate-and-transport. Under these use timescale assumptions, 

only high volatility compounds (i.e. 𝐶∗ >  3 × 107 µ𝑔 𝑚3⁄ ) are emitted and a majority (~97%) of its organics are retained 

(Table 3). Besides Daily Use Products and General Cleaners, all remaining sub-PUCs emit ≤ 1.14 kg person-1 year-1, with six 

emitting less than 0.1 kg person-1 year-1 (Table 3). Generally, sub-PUCs with low emissions stem from minimal use (e.g. Misc. 

Products), short use timescales (e.g. Short Use Products), or high control assumptions (e.g. Oil & Gas, Fuels & Lighter). 390 

3.2 Uncertainty Analysis of National-Level Emission Factors 

Uncertainty associated with product usage, proportion of evaporative organics, assumptions related to evaporation and use 

timescale, and post-use controls, where applicable, result in a total sector-wide emission uncertainty of ±15% (Fig. 4; 9.7 kg 

person-1 year-1 [95% CI: 8.3 – 11.2]). Interestingly, the interaction of evaporation and use timescales can result in a threshold 

effect, where small changes in either do not necessarily translate into changes in the magnitude of emissions for a given sub-PUC 395 

(Fig. S2). For many PUCs, such as Paints & Coatings, Adhesives & Sealants, and Printing Inks, the use timescale is sufficiently 

long (i.e. years) for all evaporative organics to evaporate, regardless of the uncertainty associated with the evaporation and use 

timescales. Under such conditions, only uncertainty in product usage and product composition affect uncertainty in the emission 

magnitude. As a result, these two variables are the largest drivers of uncertainty for the complete sector (Fig. S2). However, 

uncertainties associated with evaporation and use timescale assumptions can be important for certain sub-PUCs with moderate to 400 

low use timescales (see Cleaning Products in Fig. S2). For example, Detergents & Soaps is assigned a “Minutes” use timescale, 

which results in a 0.12 kg person-1 year-1 emission factor (Table 3). If the use timescale for this sub-PUC was changed to 1-hr, 

the emission factor would increase by a factor of 5.  

 

From a national emissions perspective, these Monte Carlo results contain several important results. First, as mentioned above, 405 

the largest drivers of uncertainty are associated with a sub-PUC’s usage and composition, not assumptions related to fate-and-

transport (i.e. evaporation and use timescales). Second, the most uncertain PUCs are Cleaning Products, Personal Care Products, 

and Paints & Coatings, and their uncertainty generates a significant amount of emissions potential. The 95% confidence interval 

for all three span > 1.3 kg person-1 year-1, which is equivalent to > 400 Gg of organic emissions per year. Finally, the 95% 

confidence interval for the national level emissions from the complete sector for 2016 is 2.7 – 3.6 Tg (1.8 – 2.4 TgC), which is 410 

broadly consistent with the US EPA’s 2017 NEI and, largely due to differences in predicted evaporation, approximately half the 

emissions magnitude reported elsewhere (McDonald et al., 2018). 

3.3 State and County-Level Emissions Allocation 

The magnitude of VCP emissions varies substantially throughout the country, with the most populated states and counties 

featuring the highest ROC emissions (Fig. 5). California (358 Gg), Texas (253 Gg), and Florida (177 Gg) are the largest state-415 

level emitters and contribute ~25% of all VCP emissions. In contrast, the 30 smallest state-level emitters (plus Washington, DC) 

together emit ~800 Gg. At the county-level, Los Angeles County, Cook County (Chicago), and Harris County (Houston) are the 

largest emitters. However, after normalizing by population, these three counties all feature per-capita emissions (8.42, 9.09, and 

8.97 kg person-1 year-1, respectively) less than the national average (9.67 kg person-1 year-1) due to less industrial activity.  

 420 

National spatial variability in per-capita emissions are largely driven by sub-PUCs tied to industrial and commercial activity 
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(Fig. 5). These sub-PUCs include Allied Paint Products (1.14 kg person-1 year-1), Industrial Coatings (1.04 kg person-1 year-1), 

Printing Inks (0.80 kg person-1 year-1), Agricultural Pesticides (0.53 kg person-1 year-1), and Oil & Gas (0.08 kg person-1 year-1). 

The employment proxies for Allied Paint Products, Industrial Coatings, and Printing Inks are usually consistent with the 

underlying population (Fig. S3), with peaks in California, Texas, Florida, New York, and the industrial Midwest. In contrast, 425 

emissions from Agricultural Pesticides and Oil & Gas drive the large per-capita emissions in the Midwest and Great Plains (Fig. 

5). Emissions from these two sub-PUCs are heavily concentrated in the central United States (Fig. S3), including North Dakota, 

South Dakota, Iowa, Nebraska, Kansas, and Oklahoma. Collectively, these states contain < 4.5 % of the United States population 

but 24.1% and 17.5% of the Agricultural Pesticides and Oil & Gas VCP emissions, respectively. Both sub-PUCs also contribute 

to atypically high per-capita emissions in other States, such as Texas, Colorado, Idaho, and Wyoming. 430 

 

While national VCP emissions from the 2017 NEI and the VCPy inventory are broadly consistent, county-level and categorical 

estimates can differ substantially between the two (Fig. S4). For example, 5% of all counties feature a decrease of > 35% and 

another 5% feature an increase of > 60%. When compared to the 2017 NEI, the states with the largest emissions increases were 

Delaware, California, and Colorado, and the States with the largest emissions decreases were North Dakota and South Dakota. 435 

There are also many spatial similarities between the two inventories. Both feature peaks in per-capita emissions over the 

Midwest and Great Plains (Fig. S4) and approximately half of all County-level emissions in the VCPy inventory are within 14% 

of their value in the 2017 NEI. To compare the two inventories categorically, all product use categories are mapped to individual 

Source Classification Codes (SCCs; Table S10). Categorically, Personal Care Products (150%) and Paints & Coatings (34%) 

feature the largest increases, whereas Pesticides (-54%) and Printing Inks (-13%) feature the largest decreases. The VCPy 440 

inventory also includes marginal increases in Cleaning Products and Adhesives & Sealants emissions, while also quantifying 

solvent-borne emissions in Oil & Gas operations (included as “Other” in Fig. S5).  

3.4 Evaluation of Inventory Using Emission Ratios 

Predicted per-capita VCP emissions in Los Angeles County are 8.42 kg person-1 year-1 and consist of 250+ organic compounds. 

Observed emission ratios were available for 30 species (Table S7), including some of the most abundantly emitted (e.g. ethanol, 445 

acetone, isopropyl alcohol, toluene). In fact, of the 30 available emission ratios, 24 were for compounds that contributed more 

than 0.1% to total VCP emissions (Fig. 6), providing the opportunity to evaluate important markers. For most compounds, the 

VCPy estimate was well within a factor of 2 when compared to observations. Some important markers were marginally low 

biased (e.g. ethanol, isopropyl alcohol), while others were marginally high biased (e.g. acetone, methyl ethyl ketone, isobutane), 

illustrating the difficulty in precisely speciating organic emissions and uncertainties introduced by compositing. However, when 450 

considered as a whole, the complete VCPy inventory performs remarkably well with a correlation of 0.95. In total, the observed 

emission ratio for all 30 compounds was 0.259 g (g CO)-1 and the inventory estimate is 0.226 g (g CO)-1, indicating a 13% low 

bias. In addition, the VCPy inventory shows a marked improvement over the 2017 NEI, which reports 3.28 kg person-1 year-1 of 

VCP emissions in Los Angeles County. For the 30 compounds considered here, the 2017 NEI reports 0.143 g (g CO)-1, which is 

45% lower than observations (Fig. S6). Most notably, the emissions ratio of ethanol, acetone, isopropyl alcohol, and propane, all 455 

of which are emitted by VCPs in substantial quantities, were low by a factor of 2-3.  

 

While the residual, 13% low bias could suggest that additional organic emissions might be missing from the VCPy inventory, 

several other factors could explain discrepancies. First, emission ratios are equally sensitive to both organic and CO emissions. 

While CO appears to be represented and modelled well in current inventories (Lu et al., 2020), a marginal, systematic bias in CO 460 
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can affect the results presented here. For example, if the CO inventory were systematically high bias by 10%, the bias in the 

VCPy inventory emission ratios would be nearly eliminated. Second, since emission ratios are not sector-specific but reflect total 

emissions, missing organic emissions might be from other sources. Mobile sources, especially gasoline exhaust, is rich in small 

(≤ C6) hydrocarbons, including ethene, n-butane, n-pentane, isopentane, methylpentanes, propene, and methylhexanes (Gentner 

et al., 2013). Except for n-butane, none of these compounds appreciably come from VCP sources and all are low biased in the 465 

complete inventory (Fig. S6). Finally, while the ambient NMVOC to CO concentration ratio in Los Angeles has been consistent 

for several decades (McDonald et al., 2013), it is possible that trends for these two pollutants could have diverged in recent 

years.  

3.5 Effective SOA Yields, O3 MIR, and Air Pollution Potential 

Nationally, the effective SOA yield of the complete sector is 5.3% by mass (Table 4) and the most abundantly emitted SOA 470 

precursors are IVOC alkanes, aromatics, volatile methyl siloxanes, and fragrances. On a sub-PUC basis, the effective yield spans 

more than two-orders of magnitude, with Short Use Products and Printing Inks featuring an effective yield of 0.05% and 14.8%, 

respectively. For O3, the effective MIR of the complete sector is 1.6 (g O3) g-1 and, when compared to SOA yields, there is 

considerably less sub-PUC variability. While VCPs do emit aromatics and alkenes, both of which are photochemically reactive 

compound classes with high ozone potential, emissions are usually dominated by oxygenated compounds and alkanes, such as 475 

acetone, isopropyl alcohol, propane, and isobutane, which are minimally reactive. In fact, of the top fifteen highest emitting VCP 

compounds, seven feature a MIR < 1.0 (g O3) g-1. 

 

While a sub-PUC may be a large source of organic emissions, this does not necessarily translate to a high potential impact on 

PM2.5 and ozone. This is best highlighted by Industrial and Architectural Coatings. Together, these two sub-PUCs constitute 480 

~20% of all VCP emissions (Table 3), but only ~10% of the total SOA potential due to their low effective yields (2.94% and 

2.42%, respectively). Architectural Coatings emissions feature significant quantities of Texanol™ (a highly branched oxygenate) 

and small glycols, such as propylene and ethylene glycol. A < 1%  and 0% SOA yield is assigned to Texanol™ and both glycols, 

respectively. Though, it should be noted that this may be a lower bound as Li et al., 2018 report moderate aerosol formation from 

propylene glycol. Similarly, Printing Inks contribute ~8% of all VCP emissions, which is nearly 2.5x less than Daily Use 485 

Products and General Cleaners nationally (Table 3). However, Printing Ink emissions are dominated by IVOC alkanes and 

aromatics, resulting in a high effective SOA yield (14.4%). As a result, Printing Inks contribute significantly to the total SOA 

potential nationally (Fig. 7). Paints & Coatings are nonetheless the dominant contributor to SOA potential, but this is more so 

due to the high emissions of the component sub-PUCs rather than their modest effective SOA yields (2.42 – 6.56%). Both 

General Cleaners and Daily Use Products also have moderate quantities of SOA precursors and high emissions, which translates 490 

to 17.2% and 13.1% of the national VCP SOA potential, respectively. Since the effective MIR of each sub-PUC is not highly 

variable, O3 potential is highly correlated with emissions magnitude. Overall, the three highest emitting PUC, Paints & Coatings, 

Cleaning Products, and Personal Care Products, are also the highest contributors to O3 potential (Fig. 7). 

 

These results also demonstrate how fate-and-transport assumptions can impact estimates of SOA production. For example, a 495 

prior study reported that both laundry detergent and a general-purpose spray cleaner can form appreciable quantities of SOA (Li 

et al., 2018). Here, the VCPy inventory reports an effective yield of 0.0% by mass of organic emitted for Detergents & Soaps and 

4.7% for General Cleaners (Table 4). While the organic content of both sub-PUCs, by mass, is ≥ 18% (Table 2), Detergents & 

Soaps feature a dramatically smaller use timescale (Minutes vs. Days). As a result, not only is the total mass of organic emissions 
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from Detergents & Soaps smaller than General Cleaners, but the collection of compounds that are emitted feature systematically 500 

smaller evaporation timescales. Such compounds are highly volatile (i.e. 𝐶∗ >  1 × 108 µ𝑔 𝑚−3) and not SOA precursors. In 

contrast, General Cleaners are assigned a longer use timescale, which provides time for lower volatility organics (i.e. IVOCs) to 

evaporate and subsequently contribute to the formation of SOA.  

3.6 Non-Evaporative Organic Assumptions 

The composition and volatility distribution of the organics assumed to be non-evaporative, which is ~60% of all organics (Fig. 505 

S8), is unidentified and assumed to be entirely non-volatile for the main analysis. However, there is evidence that a non-

negligible portion of this mass may be SVOCs (0.3 µ𝑔 𝑚−3 < 𝐶∗ <  300 µ𝑔 𝑚−3), which can evaporate on atmospherically 

relevant timescales (Khare and Gentner, 2018). SHEDS-HT, a near-field model used to prioritize human exposure to chemicals 

(Isaacs et al., 2014), reports that > 15%, > 5%, and > 2% of all organics found in residential personal care product, household 

product, and coatings, respectively, are composed of SVOCs (Qin et al., 2020). The treatment of non-evaporative organics and 510 

their potential emission can have a substantial impact on the modulation of SOA potential from VCPs. For example, if the 

assumption regarding evaporation of these organics is relaxed by assuming 1% of all non-evaporative organics eventually do 

evaporate, sector-wide emissions would increase by 0.18 kg person-1 year-1 (i.e. < 2% of the VCP emissions). Such a scenario is 

possible for products featuring long use timescales (e.g. paints, pesticides), if SVOCs are considered non-evaporative, or if 

products featuring shorter use timescales (e.g. Daily Use Products, Cleaning Products) are not fully sequestered. Since this 515 

increase in emissions is minor (i.e. < 2%), there would be negligible impacts on the total emission magnitude and O3. However, 

these compounds, by definition, feature low vapor pressures, which makes them prime SOA precursor candidates. If these 

compounds were permitted to form SOA with 100% efficiency, the effective yield from the complete sector would increase from 

5.3% to 7.0% by mass (Fig. S8). Correspondingly, if 2% of all non-evaporative organics were assumed to evaporate with similar 

SOA formation assumptions, the effective yield from the complete sector would increase to 8.6% by mass.  520 

4 Additional Uncertainties 

The current VCPy framework assumes all evaporated organics reach the ambient atmosphere, regardless of origin. However, 

VCP emissions occur both indoors and outdoors (Farmer et al., 2019; Nazaroff and Weschler, 2004; Singer et al., 2006a). In fact, 

the indoor concentration of prevalent VCP markers and secondary pollutants often exceeds outdoor concentrations (Farmer et al., 

2019; Patel et al., 2020). For ambient air emissions, consideration of VCP emissions indoors is important if there is a gas-phase 525 

loss mechanism occurring at a scale that is comparable to typical indoor air exchange rates (~0.5 hr -1; Murray and Burmaster, 

1995). Indeed, sorption of gas-phase organics (e.g. terpenes) into typical residential furnishing and dust has been shown to occur 

on relevant timescales (Singer et al., 2007; Singer et al., 2004; Weschler and Nazaroff, 2008). Organics emitted indoors can also 

react with oxidants, leading to the formation of lower-volatility organics that can form particulates (Nazaroff and Weschler, 

2004; Singer et al., 2006b). These particulates can deposit before outdoor exhaust can occur due to the high surface-to-volume 530 

ratio of indoor settings (Abbatt and Wang, 2020; Farmer et al., 2019). Planned future VCPy functionality includes the 

incorporation of a two-box model to capture these possible termination mechanisms and distinguish between near-field and far-

field exposure pathways. 

 

In addition, the efficiency of post-use controls for several sub-PUCs can be highly uncertain and vary both in space and time. In 535 

particular, this includes Oil & Gas, which is assigned a post-use control based on average reported reinjection rates of produced 
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water (Liden et al., 2018; Lyman et al., 2018), as well as Industrial Coatings and Printing Inks, which occur at facilities capable 

of add-on controls (U.S. Environmental Protection Agency, 2006a; 2006b; 2007; 2008). Here, post-use controls are not assigned 

for Industrial Coatings or Printing Inks. As such, emissions from these sub-PUCs could feature localized high bias, depending on 

regional control requirements for facilities that use associated products. Similarly, the spatial allocation of nonpoint emissions 540 

features unique difficulties. For example, even if the allocation of nonpoint emissions was precisely matched to a quantifiable 

proxy, variation in the emission strength of individuals within that proxy (e.g. humans or employees) is often neglected (Li et al., 

2020). 

5 Conclusions 

VCPy is a new framework to model organic emissions from volatile chemical products throughout the United States including 545 

spatial allocation to regional and local scales. In VCPy, product volatilization is a function of the characteristic evaporation 

timescale of individual components and the use timescale for product-use categories. National, per-capita organic emissions from 

VCPs are 9.7 kg person-1 year-1 (6.5 kgC person-1 year-1) for 2016, which translates to 3.12 Tg (2.10 TgC) for the U.S. Paints & 

Coatings, Personal Care Products, and Cleaning Products contribute most to these emissions. When filtered to remove regulatory 

exempt organics, which enables a direct comparison to the EPA’s NEI, total emissions from VCPs are 2.6 Tg of VOC and equal 550 

in magnitude to the sum of all mobile sources nationally, thus highlighting the growing importance of the VCP sector. Organic 

emissions featured substantial (~20%) contributions from IVOCs, which are likely SOA precursors. Of this 20%, 55% are 

oxygenated compounds, 27% are n-alkanes, and the rest are largely branched and cyclic alkanes. Nationally, the effective SOA 

yield and MIR, two metrics that facilitate an approximation of the potential air quality impacts, of VCPs is 5.3% by mass and 

1.59 (g O3) g-1, respectively. This effective SOA yield indicates VCPs are likely a significant source of SOA in urban 555 

environments (Qin et al., 2020).  

 

Uncertainty associated with this framework was tested through Monte Carlo analysis. Notably, the dominant drivers of 

uncertainty were associated with estimated product usage and the composition of products, and not assumptions related to fate-

and-transport. SOA formation from VCP emissions is especially sensitive to assumptions regarding evaporation of low volatility 560 

species. If 1% of all non-evaporative organics eventually do evaporate, sector-wide emissions would increase by 0.18 kg person-1 

year-1 and the effective SOA yield from the complete sector could increase by > 1%. The 95% confidence interval for the 

national level emissions from the complete sector for 2016 is 2.68 – 3.60 Tg (1.81 – 2.42 TgC). This is consistent with the 2017 

National Emission Inventory and half the emissions magnitude reported elsewhere (McDonald et al., 2018).  

 565 

While the national level emissions from the VCPy framework and the 2017 NEI are comparable, regional and localized 

differences can be significant. This is most clear when evaluating the VCPy inventory to published emission ratios. For Los 

Angeles County, the VCPy inventory performs well (normalized mean bias of -13% with r = 0.95) and is significantly improved 

over the reported 2017 NEI VCP emissions. Planned future work includes adoption of variable emission settings (indoor vs. 

outdoor) to account for loss mechanisms indoors (e.g. gas-phase sorption to surfaces), revisited mapping of VCP emissions to 570 

common chemical mechanisms for ease of research use in the chemical transport modelling community, estimation of SOA and 

ozone formation from VCPs using a chemical transport model and VCPy emissions inputs, and understanding the evolution of 

VCP emissions over time. 
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Data Availability 

VCPy.v1.0 will be available on data.gov following publication (doi to be provided). All data presented in this manuscript can be 575 

retrieved and/or generated by downloading VCPy.v1.0. Additional instructions can be found in the main directory and guidance 

can be requested by contacting one of the corresponding authors. 
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Table 1: Description of all PUCs and sub-PUCs currently implemented in VCPy, their estimated mass usage for 2016, and product 

examples of each. See Table S2 for a derivation of all product usage estimates. 

Product Use 

Categories 

(PUCs) 

Sub-Product Use 

Categories  

(sub-PUCs) 

2016 Annual Usage 

[kg person-1 year-1] 
Product Examples 

Cleaning 

Products 

Detergents & Soaps 40.58 Soaps, Detergents, Metal Cleaners, Scouring Cleaners 

General Cleaners 28.47 

Disinfectants, Air Fresheners, Glass & Bathroom Cleaners, 

Windshield Washer Fluid, Hand Sanitizer, Automotive & Floor 

Polishes, Bleaches, Surfactants 

Personal Care 

Products 

Daily Use Products 8.83 

Hair Products, Perfumes, Colognes, Cleansing & Moisturizing 

Creams, Sunscreens, Hand & Body Lotion and Oils, Cosmetics, 

Deodorants 

Short Use Products 3.16 
Shampoo, Conditioners, Shaving Cream, Aftershave, 

Mouthwashes, Toothpaste 

Adhesives & 

Sealants 
Adhesives & Sealants 15.23 

Glues and Adhesives, Epoxy Adhesives, Other Adhesives, 

Structural and Nonstructural Caulking Compounds and Sealants 

Paints & 

Coatings 

Architectural Coatings 13.27 Exterior/Interior Flat/Gloss Paints, Primers, Sealers, Lacquers 

Aerosol Coatings 0.39 Paint Concentrates Produced for Aerosol Containers 

Allied Paint Products 1.26 Thinners, Strippers, Cleaners, Paint/Varnish Removers 

Industrial Coatings 7.42 
Automotive, Appliance, Furniture, Paper, Electrical Insulating, 

Marine, Maintenance, and Traffic Marking Finishes and Paints 

Printing Inks Printing Inks 3.20 
Letterpress, Lithographic, Gravure, Flexographic, 

Nonimpact/Digital Inks 

Pesticides & 

FIFRA Products 

FIFRA Pesticides  1.46 
Lawn and Garden Pesticides and Chemicals, Household and 

Institutional Pesticides and Chemicals 

Agricultural Pesticides 10.32 
Agricultural and Commercial Pesticides & Other Organic 

Chemicals 

Dry Cleaning Dry Cleaning 0.03 Dry Cleaning Fluids 

Oil & Gas Oil & Gas 1.32 Cleaners, Deicers 

Misc. Products Misc. Products 0.18 Pens, Markers, Arts and Crafts, Dyes 

Fuels & Lighter  Fuels & Lighter 2.80 Lighter Fluid, Fire Starter, Other Fuels 
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Table 2: 1st-Order product composition profiles and evaporative organics proportion for all sub-PUCs. 875 

Product Use Categories 

(PUCs) 

Sub-Product Use 

Categories (sub-PUCs) 
Water Inorganic 

Non-Evaporative 

Organicsa 

Evaporative 

Organicsa 

Cleaning Products 
Detergents & Soapsb 67.8% 13.9% 15.4% 2.9% 

General Cleanersb 73.3% 8.6% 11.1% 6.9% 

Personal Care Products 
Daily Use Productsb 48.8% 10.7% 16.9% 23.7% 

Short Use Productsb 72.2% 5.8% 17.7% 4.3% 

Adhesives & Sealants Adhesives & Sealantsb 12.8% 53.2% 29.0% 5.0% 

Paints & Coatings 

Architectural Coatingsc 41.9% 51.1% 0.0% 6.8% 

Aerosol Coatingsd 12.7% 12.7% 0.0% 74.7% 

Allied Paint Productsb 5.1% 3.5% 0.6% 90.8% 
Industrial Coatingse 15.0% 70.0% 0.0% 14.0% 

Printing Inks Printing Inksf 8.0% 67.0% 0.0% 25.0% 

Pesticides & FIFRA 

Products 

FIFRA Pesticidesb 74.8% 4.9% 15.1% 5.1% 

Agricultural Pesticidesb 74.8% 4.9% 15.1% 5.1% 

Dry Cleaning Dry Cleaningg 0.0% 0.0% 0.0% 100% 

Oil & Gas Oil & Gasg 0.0% 0.0% 0.0% 100% 

Misc. Products Misc. Productsb 27.1% 14.6% 48.8% 9.5% 

Fuels & Lighter Fuels & Lighterb 0.0% 92.9% 0.0% 7.1% 
a: “Non-Evaporative Organics” and “Evaporative Organics” sum to total product organics. “Evaporative Organics” represent the 

potentially evaporative organic fraction of the total product and excludes assumed “non-evaporative” (i.e. assumed non-volatile) 

organics, which are not included in the California Air Resource Board’s organic profiles. 

b: Source: California Air Resources Board 2015 Consumer and Commercial Products Survey Data (CARB, 2019). 
c: Source: California Air Resources Board 2005 Architectural Coatings Survey (CARB, 2007). VOC + Exempts is used for both 880 
organic and evaporative organics. Non-evaporative organic proportions not provided. 
d: Source: California Air Resources Board 2010 Aerosol Coatings Survey (CARB, 2012). Only evaporative organics is provided. 

Remainder (~25%) is split evenly between water and inorganics. 
e: Source: Industrial Maintenance composition data from California Air Resources Board 2005 Architectural Coatings Survey (CARB, 

2007). 885 
f: Source: Graphic Arts composition data from California Air Resources Board 2005 Architectural Coatings Survey (CARB, 2007). 
g: All product usage is composed of organic functional solvents (The Freedonia Group, 2016). Therefore, all mass is assumed to be 

potentially evaporative.  
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Table 3: National-level emissions, volatilization fraction, and proportion of all usage that is emitted for all sub-PUCs. 

Product Use 

Categories (PUCs) 

Sub-Product Use 

Categories 

(sub-PUCs) 

ROC Emissions Organic 

Volatilization 

Fraction 

[%]a 

Total 

Product 

Emitted 

[%] 
[kg person-1 year-1] [kgC person-1 year-1] 

Cleaning Products 
Detergents & Soaps 0.12 0.06 1.6% 0.3% 

General Cleaners 1.85 1.25 36.0% 6.5% 

Personal Care 

Products 

Daily Use Products 2.03 1.12 56.7% 23.0% 

Short Use Products 0.02 0.01 3.3% 0.7% 

Adhesives & Sealants Adhesives & Sealants 0.76 0.56 14.7% 5.0% 

Paints & Coatings 

Architectural Coatings 0.89 0.51 100%b 6.7% 

Aerosol Coatings 0.29 0.22 100%b 74.7% 

Allied Paint Products 1.14 0.80 99.2% 90.6% 

Industrial Coatings 1.04 0.79 100%b 14.0% 

Printing Inks Printing Inks 0.80 0.65 100%b 25.0% 

Pesticides & FIFRA 

Products 

FIFRA Pesticides 0.07 0.06 25.2% 5.1% 

Agricultural Pesticides 0.53 0.41 25.2% 5.1% 

Dry Cleaning Dry Cleaning 0.01 0.01 34.5% 34.5% 

Oil & Gas Oil & Gas 0.08 0.04 6.0% 6.0% 

Misc. Products Misc. Products 0.02 0.01 16.3% 9.5% 

Fuels & Lighter Fuels & Lighter 0.02 0.02 10.0% 0.7% 

Total 9.67 6.52 32.0% 7.0% 
a: Volatilization fraction represents the fraction of the total organic content of products that volatilize/emit to ambient air.  890 
b: The “Organic” portion of these sub-PUCs is entirely composed of “Evaporative Organics” (see Table 2). Only data from the 

California Air Resources Board’s 2015 Consumer and Commercial Products Survey featured the disaggregation of evaporative and 

non-evaporative organics. Prior surveys typically combined the non-evaporative organic portion of each profile with solids/inorganics.  
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Table 4: The national effective SOA yield and MIR for all sub-PUCs. These results are plotted in Fig. S7. 895 

Product Use Categories 

(PUCs) 

Sub-Product Use 

Categories 

(sub-PUCs) 

Effective 

SOA Yield 

[%] 

Effective MIR 

[(g O3) g-1] 

Cleaning Products 
Detergents & Soaps 0.00 1.48 

General Cleaners 4.74 1.88 

Personal Care Products 
Daily Use Products 3.27 1.38 

Short Use Products 0.05 1.27 

Adhesives & Sealants Adhesives & Sealants 6.19 1.51 

Paints & Coatings 

Architectural Coatings 2.42 1.89 

Aerosol Coatings 3.26 1.66 

Allied Paint Products 6.56 1.27 

Industrial Coatings 2.94 1.71 

Printing Inks Printing Inks 14.81 1.93 

Pesticides & FIFRA 

Products 

FIFRA Pesticides 8.10 1.01 

Agricultural Pesticides 8.10 1.01 

Dry Cleaning Dry Cleaning 3.47 1.13 

Oil & Gas Oil & Gas 2.21 1.03 

Misc. Products Misc. Products 1.94 2.26 

Fuels & Lighter Fuels & Lighter 5.35 1.15 

Total 5.26 1.59 
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Figure 1: Conceptual overview of the VCPy framework. Note: PUC = Product Use Category.  
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 900 
Figure 2: Sector-wide volatility distribution of emissions by compound class.  
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Figure 3: PUC and sector-wide volatility distribution of organic emissions. Other is summation of Dry Cleaning, Oil & Gas, Misc. 

Products, and Fuels & Lighter. Pie charts are 1st-order product composition and organic emission proportions for PUCs and the 

complete sector. Note: The “Organic” portion of all Paints & Coatings and Printing Inks pie charts is entirely composed of 905 
“Evaporative Organics” (see Table 2).   
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Figure 4: Monte Carlo sensitivity results for organic emissions. (a) Mean, interquartile range, and 95% confidence intervals for six 

PUCs and a combination of the remaining four (Dry Cleaning, Oil & Gas, Misc. Products, and Fuels & Lighter). (b) Probability 

distribution of sector-wide emission estimates. See Table S9 for a tabulation of this figure.  910 
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Figure 5: (a) State-level, (b) County-level, and (c) County-level per-capita VCP emissions.  
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Figure 6: Evaluation of organic emission ratios in Los Angeles County using observed emission ratios from summer 2010. VCPy 

inventory ratios utilize VCPy predicted emissions for VCPs and the 2017 NEI for all other sources. The scatter point colors represent 915 
the relative abundance of each compound in the complete VCP sector. For example, all green points represent compounds that are > 

1% of the total VCP emissions in Los Angeles County. Black line – 1:1; Dark grey shading – 2:1; Light grey shading – 5:1. Values 

available in Table S7.  
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Figure 7: National-level emissions, SOA potential, and O3 potential by PUC. Other is summation of Dry Cleaning, Oil & Gas, Misc. 920 
Products, and Fuels & Lighter. 
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